Меню

Как определяется абсолютная вариация средства измерения



Вариация показаний прибора

Погрешности прибора

Рабочая область частот прибора

Диапазон измерений прибора

Чувствительность прибора

Функция преобразования прибора

Связь между входной X и выходной Y величинами прибора описывается функцией преобразования: Y = f (X).

Функция преобразования, присвоенная конкретному типу приборов, называется номинальной или расчетной.

Реальная функция преобразования для каждого прибора отличается от номинальной, не выходя из пределов допустимых значений.

Чувствительность характеризуется отношением изменения сигнала на выходе прибора ΔY к вызывающему его изменению входной величины ΔX. Различают абсолютнуюи относительнуючувствительность.

Абсолютная чувствительность определяется формулой:

S = ΔY/ ΔX.

Для приборов со стрелочным указателем величина, обратная чувствительности, называется ценой деления прибора и находится как

где Xк – Xн – алгебраическая разность между конечным и начальным значениями шкалы прибора; N – количество делений шкалы.

Относительная чувствительность определяется формулой:

Sо = ΔY/ (ΔX/ X),

где ΔY – изменение сигнала на выходе; ΔX/ X – относительное изменение сигнала на входе.

Порог чувствительности – это минимальное изменение входной величины X, вызывающее визуально различимое изменение выходной величины Y.

Диапазон измерений – это область значений измеряемой величины, для которой нормированы погрешности прибора. Например, вольтметр, изображенный на рисунке 1, имеет диапазон измерений от 100 до 450 В. Часть шкалы от 0 до 100 В является нерабочей и при измерениях не используется.

Рабочая область частот – это область значений частот переменного тока, в пределах которой нормируется дополнительная частотная погрешность прибора.

Погрешности прибора связаны с отклонением реальной функции преобразования от расчетной. Значение отклонения является сложной функцией измеряемой величины и влияющих величин. Влияющей называется физическая величина, не являющаяся измеряемой, но оказывающая влияние на результат измерения, например, температура окружающей среды, напряжение питающей сети, внешнее магнитное поле.

Все возможные значения каждой влияющей величины делятся на нормальные, рабочиеи предельные.

При нормальномзначении влияющей величины погрешность прибораминимальна и называется основной погрешностью.

Изменение погрешности, вызванное отклонением влияющей величины от нормальногозначения, называется дополнительной погрешностью.

Вариация показаний b определяется как разность показаний прибора при одном и том же значении измеряемой величины при подходе стрелки к отметке шкалы со стороны меньших и со стороны больших значений. Вариация характеризует степень устойчивости показаний прибора при одних и тех же условиях измерения одной и той же величины. Причиной вариации является трение в опорах подвижной части измерительного механизма стрелочных приборов.

Вариация не должна превышать основной погрешности и вычисляется по формуле:

где Δм – абсолютная погрешность при подходе стрелки к испытуемой отметке от начальной отметки шкалы; Δб – абсолютная погрешность при подходе стрелки от конечной отметки шкалы.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Читайте также:  Средства индивидуальной защиты кожи при пожаре

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

(1.2), где X — результат измерения; Х — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

  • первые — погрешностью градуировки шкалы или ее небольшим сдвигом;
  • вторые — старением элементов средства измерения.

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Читайте также:  Средства индивидуальной защиты кожи при пожаре

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

(1.8)

Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные .

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Погрешности средств измерений подразделяются также на статические и динамические .

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Читайте также:  Средства индивидуальной защиты кожи при пожаре

Шумы — любой сигнал не несущий полезной информации.

Источник

Погрешности средств измерений

По способу выражения различают абсолютные, относительные и приведенные погрешности.

Абсолютная погрешность x выражается в единицах измеряемой величины х и равна разности между измеренным и истинным значениями (т.к. истинное значение практически всегда бывает неизвестно, то вместо него может использоваться действительное значение)

.

Абсолютная погрешность не может в полной мере служить показателем точности измерений, так как одно и то же ее значение, например,  х = 0,5 мм при х = 100 мм соответствует достаточно высокой точности измерений, а при х = 1 мм – низкой. Поэтому и вводится понятие относительной погрешности.

Относительная погрешность x представляет собой отношение абсолютной погрешности измерения к истинному (действительному, измеренному) значению и часто выражается в процентах

.

Эти формулы справедливы при условии, что .

Эта наглядная характеристика точности результата измерения не годится для нормирования погрешности средства измерения, так как, при изменении значений хИ, принимает различные значения вплоть до бесконечности при хИ = 0. В связи с этим для указания и нормирования погрешностей средств измерений используется еще одна разновидность погрешности – приведенная.

Приведенная погрешность x представляет собой отношение абсолютной погрешности средства измерения к так называемому нормирующему значению (постоянному во всем диапазоне измерений или его части), обычно выражается в процентах

.

Нормирующее значение определяется различным образом в зависимости от шкалы прибора.

Для приборов, шкала которых содержит нулевую отметку, в качестве нормирующего значения принимают размах шкалы прибора.

.

Например, если прибор имеет шкалу от 0 до 1000 единиц, то ед.; если прибор имеет шкалу от –30 до 70 единиц, тоед.

Для приборов, шкала которых не имеет нулевой отметки, в качестве нормирующего значения принимают максимальное по абсолютной величине значение шкалы.

.

Например, если прибор имеет шкалу от 900 до 1000 единиц, то ед.; если прибор имеет шкалу от – 300 до –200 единиц, тоед.

Понятие о вариации показаний приборов

Абсолютная вариация показаний прибора – разность между показаниями прибора при многократных повторных измерениях одной и той же физической величины.

На практике вариацию показаний прибора определяют как разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе к ней сначала со стороны меньших, а затем со стороны больших значений измеряемой величины

.

Значения получают при увеличении измеряемого параметра, значения– при уменьшении измеряемого параметра.

Абсолютная вариация показаний прибора обусловлена наличием эффектов гистерезиса, является частью абсолютной погрешности прибора.

Относительная вариация показаний прибора  – отношение абсолютной вариации к истинному (действительному, измеренному) значению измеряемой величины, обычно выражается в процентах

.

Приведенная вариация показания прибора  – отношение абсолютной вариации к нормирующему значению, обычно выражается в процентах

.

Источник