Меню

Что дает не надежность технических средств



Что дает не надежность технических средств

Надежность технических средств

Что называется надежностью технического средства?

Надежностью технического средства называется его свойство выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортирования

Какие свойства технического средства составляют сущность его надежности?

Надежность является комплексным свойством , которое в зависимости от назначения технического средства и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или в каком-либо сочетании применительно к техническому средству в целом или к его частям.

Безотказность — свойство технического средства непрерывно сохранять работоспособность в течение некоторого времени или некоторой наработки

Долговечность — свойство технического средства сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность — свойство технического средства, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказов, повреждений и устранению их последствий путем проведения ремонтов и технического обслуживания.

Сохраняемость — свойство технического средства непрерывно сохранять исправное и работоспособное состояние в течение и после хранения и (или) транспортирования.

Источник

Надежность технических средств

Мероприятия по повышению надежности технических средств, обеспечение непрерывной работы системы, на которую не должны влиять ошибки и сбои. Жизнеспособность вычислительного комплекса, среднее время между отказами, функции ремонтопригодности системы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 26.10.2010
Размер файла 562,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Надежность технических средств

Одна из основных причин широкого применения РВС в АСУ производством — их высокая надежность. При делении системы на ряд автономно работающих ЛВС сбой в одной машине не влечет за собой отказ всей системы. Для того чтобы система функционировала непрерывно, необходимо иметь не только резервные средства обработки, но и обеспечить надежность всей системы в целом — от датчиков до исполнительных органов, поскольку ЭВМ, получающая неверную информацию от датчиков, даже при ее полной исправности может принести больший ущерб, чем просто неисправная ЭВМ. Поэтому главная цель мероприятий по повышению надежности — обеспечение непрерывной работы системы, на которую не должны влиять ни ошибки, ни сбои.

1. Жизнеспособность вычислительного комплекса

Практика внедрения информационных, управляющих и других систем реального времени показывает, что недооценка жизнеспособности системы на стадии ее проектирования ведет порой к катастрофическим результатам — провалу всего проекта.

В отличие от систем пакетной обработки, рассматривавшихся ранее, к комплексам технических систем реального времени (СРВ) предъявляются дополнительные требования, связанные с особенностью данных систем, а именно: комплексы программ, работающие в реальном масштабе времени, обмениваются данными многими различными способами как в одной ЭВМ, так и по линиям связи, образуя сложные интерфейсы; сообщения поступают в систему независимо друг от друга и в случайные моменты времени; нарушение связи между программными модулями или ошибка в данных даже в одной ЭВМ могут вызвать непоправимые нарушения и не только в работе остальных входящих в вычислительную систему ЭВМ и периферийного оборудования, но и в деятельности всего предприятия или даже объединения, эксплуатирующего данную систему управления. Тем не менее, при всей очевидной важности проблемы обеспечения жизнеспособности комплекса технических средств при проектировании и создании АСУ различного профиля, данный вопрос редко когда решается более серьезно, чем простым резервированием некоторых наиболее «ненадежных», с точки зрения разработчиков, технических средств.

Рассмотрим компоненты, определяющие жизнеспособность вычислительной системы.

Жизнеспособность является интегральной мерой возможностей системы, которая количественно связывает три следующих фактора: надежность, ремонтопригодность и технические возможности оборудования.

Надежность в приложении к ВС часто количественно определяют средним временем между отказами (СВМО) или наработкой на отказ, т.е. как ожидаемое время между ближайшими последовательными сочетаниями событий, приводящих к отказу.

Ремонтопригодность статистически выражается средним временем восстановления (СВВ), которое необходимо для того, чтобы устранить те причины, которые привели к возникновению отказа.

Технические возможности системы определяются как степень удовлетворения системой требований со стороны задач, для решения которых она предназначена.

В основе высокой жизнеспособности КТС лежит его способность «деградировать» постепенно, т.е. способность продолжать свое хотя бы частичное функционирование, несмотря на то, что со временем технические параметры устройств ухудшаются, до тех пор, пока не перестанет работать его основное ядро.

2. Среднее время между отказами

Используя СВМО, можно характеризовать надежность от отдельных элементов до системы в целом. При этом для оценки СВМО используют перечень приводящих к отказу событий и функцию, описывающую вероятность наступления таких событий. Надежность выражается СВМО, измеряемым в часах или его обратной величиной — частотой отказов.

По мере сборки блоков из элементов вплоть до устройства в целом все сложнее становится идентификация событий, составляющих отказ. Тем не менее в большинстве случаев можно применить эффективные меры для выяснения того, произошел отказ в системе или нет. Такие меры составляют важную часть технических условий на систему.

Основная трудность, с которой сталкивается проектировщик АСУ при определении надежности технических средств, заключается в том, что расчетные данные достоверны лишь в той степени, в какой достоверны принятые исходные значения частоты отказов элементов. Серийно выпускаемые в настоящее время элементы вычислительных систем и средств автоматизации имеют достаточно высокую надежность (например, частота отказов интегральных микросхем составляет от 0,01 до 0,4 отказа на миллион часов работы). В силу этого достоверные данные по надежности отдельных устройств и системы могут быть получены только после длительных испытаний.

Кроме того, само понятие отказа вычислительной системы нуждается в уточнении. Различают отказы элементов системы и отказы системы с точки зрения пользователя. Данные об отказах первого типа, как было отмечено, содержатся в паспортных данных. Отказы второго типа не всегда вызываются отказами компонентов системы. Причинами системных отказов, с точки зрения пользователя, могут быть не только перемежающиеся отказы и сбои в работе компонентов, но также отказы программного обеспечения. Поэтому не всегда верна трактовка отказа системы, заключающаяся в том, что дефектный компонент дает всего один отказ, приводящий к системному, после чего он заменяется. Ниже приведен пример ситуации (табл. 1), когда 50 дефектных компонентов привели к 150 случаям вызова наладчиков и инженерного персонала пользователями системы, кроме того, к 50 случаям бесполезного поиска неисправных компонентов и 100 случаям замены компонентов, половина из которых на самом деле исправны.

Значение СВМО системы зависит в определенной мере от пользователей; некоторые из них при отказе перезапускают ее процедурами рестарта, в то время как другие прибегают к помощи наладчиков и требуют поиска неисправностей. В результате, с точки зрения пользователя, СВМО системы окажется отличным от рассчитанного разработчиком и указанного в технической документации.

Читайте также:  Средство для ухода за кожей под глазами real techniques skin revive your eyes

3. Ремонтопригодность системы

Статистически ремонтопригодность выражается средним временем восстановления системы, которое зависит от контекста еще в большей степени, чем средняя наработка на отказ.

Среднее время восстановления само по себе является величиной, определяемой средними временами выполнения следующих основных операций: обнаружения факта появления отказа; выделения отказавшего элемента; удаления отказавшего элемента; получения, замены или ремонта данного элемента; монтажа заменяемого элемента; проверки работы после замены; инициализации ВС; возобновления работы программного обеспечения эксплуатируемой системы.

Все эти операции, кажущиеся простыми, на самом деле взаимосвязаны. Например, замена отказавшего элемента может привести к отказу другого; на поиск отказа в ВС может уйти непредсказуемо долгое время, особенно если этот отказ не выявлен сразу, а повлек за собой серию лавинообразных изменений в системе программного обеспечения; выявление отказавшего элемента вызывает побочные действия, приводящие к отказу уже не одного блока, а всей вычислительной системы в целом. В частности, отключение питания на отказавшем устройстве в случае отсутствия отдельного разъема может привести к необходимости отключения стойки, в которой находится ряд исправных и не подлежащих выключению устройств; проверка работоспособности отремонтированного блока вне системы не является гарантией того, что блок является исправным; успешная инициализация системы после ремонта одного из ее блоков может подчас говорить не об успешном включении данного блока в работу всей ВС, а лишь о слабой его загрузке и т д.

Поэтому ремонтоспособность системы зависит в первую очередь от следующих «неизмеряемых» факторов: организации обслуживания на месте, средств обслуживания, квалификации обслуживающего персонала, места расположения неисправного блока, его окружения, удобства замены блока. Все эти факторы могут вызвать заметное отклонение от ^среднего времени восстановления системы. Игнорировать эти кажущиеся «мелочи» проектировщик систем реального времени не имеет права.

В вычислительной системе можно довести детализацию любого из ее блоков до элементов, с которыми не происходит постепенной «деградации». Такой элемент находится всегда в одном из двух альтернативных состояний — ВКЛ или ВЫКЛ. Вероятность того, что элемент находится в состоянии ВКЛ называется готовностью элемента. Аналогичный параметр ВС называется готовностью системы.

Готовность элемента определяется формулой Рвкл = СВМО/ (СВМО + СВВ). Данная формула является приближенной, тем не менее она является весьма эффективной при оценке жизнеспособности системы. Вероятность того, что элемент находится в состоянии ВЫКЛ, определяется формулой

Рвыкл = 1 — Рвкл = СВВ/ (СВМО + СВВ).

Для работоспособности системы нет никакой разницы между отключением элемента из-за его выхода из строя или отключения в профилактических целях. Следовательно, СВМО и СВВ должны отражать организацию профилактических работ, предусмотренных для данной системы. Если эти времена существенно зависят от профилактических работ (например, для лентопротяжных механизмов), имеет смысл оценить это влияние. Пусть система состоит из п элементов. Так как каждый из них может находиться в одном из двух состояний (ВКЛ или ВЫКЛ), то имеется 2 n возможных или конфигурационных состояний системы и с каждым состоянием связана вероятность нахождения ВС в этом состоянии. Для подсистемы i получим:

Вероятность данного состояния системы РS определяется для независимых подсистем как произведение вероятностей для подсистем, отвечающих данному состоянию:

Предположим, что для каждого конфигурационного состояния системы, т.е. для каждого интересующего нас параметра технических возможностей, его величина, определяемая в числовом виде, имеет особое значение. Тогда анализ жизнеспособности ВС будет состоять из следующих шагов:

1) разработка модели конфигурационного состояния ВС;

2) определение на основе элементов СВМО и СВВ коэффициента готовности для каждого конфигурационного состояния.

4. Функция ограничения возможностей системы

Предположим, что нас интересуют k параметров, определяющих технические возможности ВС. С каждым конфигурационным состоянием Sx связана определенная величина каждого из рассматриваемых параметров А, с которым в свою очередь связана функция ограничения (Fогр), определяющая относительную важность соответствующего параметра. Эта функция

где фх — длительность нахождения системы в данном состоянии. Задержка выполнения функции обработки может оказаться не столь важной, пока не достигнет пороговой величины. Повышение (относительно расчетных) технических возможностей никак не учитывается, тогда как уменьшение их ниже допустимого предела резко ограничивает возможности ВС. Например, для нормального функционирования операционной системы UNIX на ЭВМ класса СМ-4 требуется объем оперативной памяти — 1 Мбайт, в случае уменьшения ее до 256 Кбайт возможности данной ОС резко падают и она практически теряет все преимущества перед другими ОС, значительно более слабыми (RSX — 11 М).

На рис. 1 приведен вид некоторых типичных функций ограничения, где по оси X откладывается значение параметра (в нормализованном от некоторого заданного уровня виде), а по оси Y — значение параметра, определенное функцией ограничения.

На рис. 1, а приведена функция ограничения параметра, для которого превышение технических возможностей игнорируется по каждому их уровню вплоть до максимума, которому присваивается полный вес. Например, дисковая память емкостью ?9 Мбайт не дает никаких практических преимуществ, если для создания базы данных системы со всеми словарями необходимо 10 Мбайт.

На рис. 1, б приведена функция ограничения для нежелательного параметра. Номинальному значению соответствует полное отсутствие данного фактора. Примером такого параметра является время реакции в системе, которое в идеальном случае должно выражаться несколькими миллисекундами. В случае его увеличения до величины, вызывающей у пользователя нежелание работать с предлагаемой ему системой, дальнейшее снижение значения функций ограничения приостанавливается.

На рис. 1, в приведена функция ограничения параметра, который получает положительную оценку лишь по достижении определенной минимальной величины (например, система сервоуправления, где для обеспечения стабильности каждую секунду необходимо выполнять минимальное число итераций).

На рис. 1, г приведен параметр с функцией ограничения типа «окно». Примером может служить устройство построчной печати, при уменьшении скорости печати которого до некоторой минимальной величины его полезность равна нулю, поскольку для этой скорости печати существуют знакосинтезирующие устройства, значительно более дешевые. Если же устройство печатает с очень большой скоростью все время, то это также не имеет смысла, поскольку гору бумаги, которую в состоянии напечатать современное устройство печати даже за 1 ч непрерывной работы, невозможно просмотреть в приемлемое время ни одному пользователю.

На рис. 1, д приведена двоичная функция ограничения, которая характеризуется тем, что, как только рассматриваемый параметр превзойдет заданный минимальный уровень, функция ограничения сразу приобретет максимальное значение. Пример такой системы — синхронная передача данных: при стыковке дисплея с ЭВМ совершенно неважно, что линия может работать со скоростью в несколько млн. бод, поскольку дисплейный интерфейс работает со значительно меньшей скоростью (9600 бод), а на любой другой скорости передачи данных возникают искажения.

Читайте также:  Моющие дезинфицирующие средства для пищевых предприятий

Приведенные примеры не описывают весь возможный диапазон функций ограничения, которая может быть непрерывной, дискретной, разрывной, нелинейной и т.д. Кроме того, Fогр может меняться с течением жизни вычислительной системы или программного обеспечения, реализованного на данной ВС.

5. Распределение уровней технической возможности КТС

Поскольку каждому конфигурационному состоянию системы ставится в соответствие некоторая вероятность, а каждому параметру технических возможностей — некоторая величина, то вероятность достижения любого заданного уровня технической возможности определяется как сумма вероятностей пребывания в каждом из состояний с таким уровнем. Как правило, состояний, в которых достигается данный уровень некоторой технической возможности, достаточно много.

Суммируя вероятности, относящиеся к каждому уровню параметра технических возможностей, можно построить функцию распределения вероятностей, подобную изображенной на рис. 2. Практически такая функция не может быть непрерывной, однако в таком виде ею значительно легче пользоваться.

Для каждого параметра технических возможностей имеется по одному такому распределению. Система, у которой отсутствует постепенная «деградация», на таком графике будет представлена двумя точками. Система более общего вида характеризуется подобной кривой, и именно это распределение описывает жизнеспособность системы.

Математическое ожидание распределения выражает ожидаемое значение рассматриваемого параметра, получаемое усреднением по всей совокупности возможных состояний. Отношение среднего значения параметра к максимальному называется эффективной жизнеспособностью ВС. Второй момент этого распределения характеризует спорадичность поведения системы, третий — показывает, насколько может ухудшиться положение перед окончательным выходом ВС из строя.

Показанное на рис. 2 распределение типично для системы с хорошей жизнеспособностью. Чем больше м, тем меньше у, и чем меньше пик при нулевом уровне рассматриваемого параметра, тем лучше качество системы. Подъем вблизи нуля показывает, что ВС имеет больше состояний, в которых она не работоспособна, чем это определяется уровнем технических возможностей.

Еще более удобный способ представления данных о жизнеспособности системы — построение кривых распределения интегральной вероятности различных параметров технических возможностей. В результате получим кривые, показанные на рис. 3. Кривая А типична для систем с постепенной деградацией; В — отражает более высокий уровень жизнеспособности; кривая D характерна для ВС, в которой высокая надежность отдельных блоков сочетается с малой собственной жизнеспособностью; Е — отражает работу системы в режиме двоичного отказа при нахождении точки разрыва далеко от начала, такая система близка к идеальной; кривая F является иллюстрацией получения высокой жизнеспособности за счет большого запаса надежности.

Необходимая в каждом случае форма кривой зависит от характера применения ВС, что должно быть оговорено в технических условиях на нее. Следует задавать, по крайней мере, два уровня каждого параметра технических возможностей, а также значение вероятности для каждого из этих уровней.

В настоящее время эффективное значение жизнеспособности, равное 0,99, в случае достаточно больших систем обеспечивается при условии минимальной избыточности (20-30%) при весьма скромных требованиях к среднему времени между отказами в сотни часов и среднему времени восстановления, составляющему десятки минут. Надо обратить внимание на то, что СВМО в данном случае рассматривается при довольно высоком (90%) уровне достоверности, что не часто бывает на практике.

Подобные документы

Виды и способы резервирования как метода повышения надежности технических систем. Расчет надежности технических систем по надежности их элементов. Системы с последовательным и параллельным соединением элементов. Способы преобразования сложных структур.

презентация [239,6 K], добавлен 03.01.2014

Понятие надежности и его значение для проектирования и эксплуатации технических элементов. Основные понятия теории надежности. Резервы повышения надежности радиоэлектронных элементов и возможности их реализации. Расчет надежности типового устройства.

курсовая работа [4,4 M], добавлен 25.01.2012

Специфика проектирования системы автоматического управления газотурбинной электростанции. Проведение расчета ее структурной надежности. Обзор элементов, входящих в блоки САУ. Резервирование как способ повышения характеристик надежности технических систем.

дипломная работа [949,7 K], добавлен 28.10.2013

Принципы проектирования комплекса технических средств автоматизированных систем управления. Требования, предъявляемые к специализированным устройствам, и затраты на их реализацию. Устройства кодирования графической информации. Графопостроители и табло.

реферат [616,3 K], добавлен 20.02.2011

Основные понятия теории надежности. Состояние объекта, его эксплуатация, срок службы. Показатели безотказности, ремонтопригодности, долговечности, сохраняемости. Виды надежности. Характеристики отказов объекта, элемента, системы. Причины их возникновения.

презентация [16,5 K], добавлен 03.01.2014

Изучение методики расчета показателей надежности электронного модуля при экспоненциальном законе распределения отказов элементов. Показатели надежности объектов. Прибор для получения «серебряной» воды. Тактовые импульсы с коллектора транзистора.

контрольная работа [71,6 K], добавлен 23.01.2014

Автоматизация технологического процесса системы телоснабжения. Анализ методов и средств контроля, регулирования и сигнализации технологических параметров. Выбор и обоснование технических средств, микропроцессорного контролера. Оценка устойчивости системы.

дипломная работа [1,3 M], добавлен 31.12.2015

Источник

Обеспечение надежности технических средств

Вопросы надежности и организации эксплуатации технических средств оказывают существенное влияние на эффективность их функционирования.

Под надежностьюпонимается свойство технических средств сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях.

Общее свойство надежности является сочетание следующих свойств:

Безотказность — это свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки. Наработка — это продолжительность или объем работы объекта. Наработка может измеряться в единицах времени или объема выполненной работы (длины, площади, массы, числа срабатываний и пр.), например: для автомобилей наработка может измеряться километражем пробега, для реле — количеством переключений на некотором временном интервале

Ремонтопригодность — это свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

Близким к ремонтопригодности понятием является восстанавливаемость. Ремонтопригодное изделие становится восстанавливаемым, если при его применении допускаются вынужденные перерывы в работе всего изделия или его составных частей, имеются необходимая контрольно-измерительная аппаратура, запасные части и обслуживающий персонал соответствующей квалификации. Из сказанного следует, что не каждое ремонтопригодное изделие является восстанавливаемым. Более того, одно и то же изделие в различных ситуациях может быть либо восстанавливаемым, либо невосстанавливаемым. С другой стороны, не каждое восстанавливаемое изделие ремонтопригодно. Примером может служить изделие, в котором отказ возникает вследствие резкого ухудшения условий функционирования. Его работоспособность восстанавливается без вмешательства персонала сразу же после возвращения к нормальным условиям функционирования. Работоспособность может восстанавливаться и путем реконфигурации технических и программных средств без проведения ремонта или замены отказавшего модуля.

Сохраняемость — это свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции в течение и после хранения и/или транспортирования.

Читайте также:  Чем выгнать камни из почек народными средствами

Сохраняемость характеризует поведение объекта в условиях, весьма существенно отличающихся от условий эксплуатации. Прежде всего во время хранения и транспортирования объект находится в выключенном состоянии. Кроме того, есть различия в температуре окружающей среды, влажности, других климатических условиях, механических нагрузках.

Долговечность — это свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта. Предельное состояние — это такое состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно. Предельное состояние возникает вследствие старения, износа или существенного снижения эффективности применения объекта. В технической документации обычно указывают, какое состояние объекта следует считать предельным.

В процессе функционирования технических средств могут происходить отказы и сбои, связанные:

• Во-первых, с внутренними причинами – нарушением контактов в разъемных соединениях и в местах пайки, появлением микротрещин в печатном монтаже, выходом из строя микросхем, электрорадиоэлементов, механических и электромеханических частей устройств и т.д.;

• Во-вторых, с внешними причинами – нарушением условий эксплуатации по температуре и влажности окружающей среды, повышенный уровень вибрации, кратковременные перебои и наличие помех в системе электропитания.

Под отказомпонимают нарушение работоспособного состояния. Такое нарушение может быть полным (выход из строя центральных устройств, например, процессора или оперативной памяти ЭВМ) или частичным (выход из строя одного из периферийных устройств). При обнаружении отказа необходимо проведение ремонта, замены или регулировки неисправных элементов, узлов, блоков или устройств. Продолжительность работы оборудования от окончания восстановления работоспособного состояния после отказа до появления следующего отказа называют наработкой между отказами.

Сбой– это кратковременное самоустраняющееся нарушение процесса нормального функционирования.

Сбой не нарушает работоспособного состояния оборудования, но может вызывать искажение информации.

Поэтому последствия сбоев устраняются путем восстановления достоверности информации (например, повторным пуском программы или ее части на ЭВМ).

Рассматриваемые технические средства относятся к обслуживаемым, восстанавливаемым и ремонтируемым средствам, то есть для них предусматривается возможность технического обслуживания, восстановления работоспособного состояния и проведения ремонтов.

Надежность может характеризоваться следующими основными показателями:

􀂾 для оценки безотказности – вероятность безотказной работы, средняя наработка на отказ, интенсивность отказов;

Средняя наработка на отказ объекта (наработка на отказ) определяется как отношение суммарной наработки восстанавливаемого объекта к числу отказов, происшедших за суммарную наработку:

, (2.13)

где ti – наработка ( это продолжительность или объем работы объекта.) между i-1 и i-м отказами, ч; n(t) — суммарное число отказов за время t.

􀂾 для оценки долговечности – средний срок службы;

􀂾 для оценки ремонтопригодности – среднее время восстановления работоспособного состояния;

􀂾 для комплексной оценки – коэффициент готовности и коэффициент технического использования.

Эти коэффициенты определяют долю времени нахождения ТС в работоспособном состоянии относительно рассматриваемого периода эксплуатации.

Повышение надежности может быть достигнуто применением следующих методов:

Элементные методы. Надежность ТСИ определяется прежде всего надежностью комплектующих элементов. Поэтому традиционный способ повышения наработки между отказами (и сбоями) связан с использованием более надежной элементной базы и совершенствованием конструктивно-технологической основы. Надежность элементной базы существенно возрастает при переходе от одного поколения к другому, а показатели надежности современной элементной базы (интегральных схем различной степени интеграции) достаточно высоки.

Основным конструктивным звеном электронного наполнения компьютера является печатная плата типового размера с разъемом. Хотя при такой конструкции процесс ремонта сокращается до минимума, остается проблема обнаружения неисправности и ее локализация.

Контрольно-диагностические методы. С целью поддержания высоких показателей ремонтопригодности и обеспечения достоверности информации на выходе вычислительной системы в их составе предусматриваются средства и системы автоматического контроля и диагностики.

Автоматический контрольприостанавливает выполнение операций в момент обнаружения ошибки и определяет причину ее появления (сбой, отказ). В случае сбоя система восстанавливает достоверность информации, обеспечивая возможность продолжения работы, а при отказе индицирует (указывает, выводит) ошибку, информируя о необходимости вмешательства обслуживающего персонала. Наличие такой системы препятствует распространению последствий ошибки в процессах сбора и обработки информации и гарантирует достоверность полученных данных и результатов.

Основное назначение систем автоматической диагностикизаключается в снижении времени восстановления, в облегчении ремонта и обслуживания сложных технических средств. Система определяет место неисправности и выдает обслуживающему персоналу информацию, необходимую для быстрого устранения возникших неисправностей.

Контроль и диагностика реализуется с помощью оптимального сочетания аппаратных и программных средств.

Структурные методыоснованы на применении принципов дублирования, резервирования и реконфигурации систем, которые обеспечивают достоверность и надежность выполнения технологических процессов.

· Принцип дублированиясводится к организации одновременного и параллельного выполнения одних и тех же функций системой из двух однотипных устройств и сравнения получаемых промежуточных и выходных данных. При этом одно из них считается основным, другое – вспомогательным, а выдачу информации производит только основное.

· Если основное устройство выходит из строя, то его функции выполняет вспомогательное (без дублирования) или при повышенных требованиях к достоверности и надежности подключается дополнительное устройство, восстанавливая дублирование (принцип резервирования). Эти принципы облегчают диагностику неисправностей за счет возможности выполнения взаимной диагностики однотипных технических средств.

Рис.1. Схема контроля построенная на основе дублирования

· Принцип реконфигурацииповышает живучесть и обеспечивает длительное функционирование системы без потери способности выполнять основные функции при отказах. Для его реализации требуется введение дополнительного оборудования (групп однотипных устройств, например, процессоров, модулей памяти и т.п.) и специальная логическая организация. Функции вышедших из строя устройств перераспределяются между работоспособными устройствами в случае отказов.

Организационные методы. Надежность систем определяется не только принципами и качеством их разработки и изготовления, но и способами и качеством обслуживания. Поэтому еще один путь повышения показателей надежности связан с организацией их технического обслуживания, то есть с проведением профилактических и других организационно-технических мероприятий. Они выполняются с целью поддержания устройств в работоспособном состоянии, предупреждения и выявления отказов и сбоев, устранения их причин, повышения квалификации обслуживающего персонала. К основным мероприятиям относятся плановые профилактические работы, проводимые с определенной периодичностью по утвержденному графику. При составлении графиков объем работ зависит от технического состояния устройства и квалификации обслуживающего персонала. Поэтому эксплуатационные расходы тесно связаны с показателями надежности оборудования, а профилактические работы не только улучшают эти показатели, но и сокращают эксплуатационные расходы.

Таким образом, комплексное применение указанных способов обеспечивает высокую надежность современных вычислительных систем, повышает такие показатели, как средняя наработка на отказ или сбой, коэффициенты готовности и технического использования.

Источник